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Viscous liquid drops undergoing forced oscillations have been shown to exhibit
hysteretic deformation under certain conditions both in experiments and by solution
of simplified model equations that can only provide a qualitative description of their
true response. The first hysteretic deformation results for oscillating pendant drops
obtained by solving the full transient, nonlinear Navier–Stokes system are presented
herein using a sweep procedure in which either the forcing amplitude A or frequency
Ω is first increased and then decreased over a given range. The results show the
emergence of turning-point bifurcations in the parameter space of drop deformation
versus the swept parameter. For example, when a sweep is carried out by varying Ω
while holding A fixed, the first turning point occurs at Ω ≡ Ωu as Ω is being increased
and the second one occurs at Ω ≡ Ωl < Ωu as Ω is being decreased. The two turning
points shift further from each other and toward lower values of the swept parameter as
Reynolds number Re is increased. These turning points mark the ends of a hysteresis
range within which the drop may attain either of two stable steady oscillatory states –
limit cycles – as identified by two distinct solution branches. In the hysteresis range,
one solution branch, referred to as the upper solution branch, is characterized by
drops having larger maximum deformations compared to those on the other branch,
referred to as the lower solution branch. Over the range Ωl 6 Ω 6 Ωu, the sweep
procedure enables detection of the upper solution branch which cannot be found if
initially static drops are set into oscillation as in previous studies of forced oscillations
of supported and captive drops, or liquid bridges. The locations of the turning points
and the associated jumps in drop response amplitudes observed at them are studied
over the parameter ranges 0.05 6 A 6 0.125, 20 6 Re 6 40, and gravitational Bond
number 0 6 G 6 1. Critical forcing amplitudes for onset of hysteresis are also
determined for these Re values. The new findings have important ramifications in
several practical applications. First, that Ωu −Ωl increases as Re increases overcomes
the limitation which is inherent to the current practice of inferring the surface
tension and/or viscosity of a bridge/drop liquid from measurement of its resonance
frequencies (Chen & Tsamopoulos 1993; Mollot et al. 1993). Moreover, that the value
of A for onset of hysteresis can be as low as 5% of the drop radius, or lower, has
important implications for other free-surface flows such as coating flows.

1. Introduction
There is growing interest in developing a fundamental understanding of forced

oscillations of liquid bridges or captive drops (Borkar & Tsamopoulos 1991; Mollot et
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al. 1993; Chen & Tsamopoulos 1993, hereafter referred to as C&T), pendant bubbles
(Chang & Franses 1994a, b), supported – pendant and sessile – drops (DePaoli, Scott &
Basaran 1992; Wilkes & Basaran 1997, hereafter referred to as W&B), and acoustically
levitated drops (Daidz̆ić 1995; Trinh, Holt & Thiessen 1996). The motivation for many
of these studies comes from practical applications in diverse fields, examples of which
include agglomeration of powders (Chen, Tsamopoulos & Good 1992; Tsamopoulos,
Chen & Borkar 1992; C&T), measurement of the viscosity and surface tension
of high-temperature materials (C&T; Basaran & DePaoli 1994), measurement of
dynamic surface tension (Chang & Franses 1994a, b), mass transfer enhancement in
electric field-assisted solvent extraction (Scott & Wham 1988; Ptasinski & Kerkhof
1992), electrospray methods for synthesis of ceramic precursor powders (Harris,
Scott & Byers 1992), and two-phase heat transfer cells for micro-gravity based on
vibration-induced atomization of supported drops (Smith et al. 1998).

When supported drops or their closely related analogues that are referred to in
the previous paragraph are forced to undergo finite-amplitude oscillations at forcing
frequency Ω̃ and fixed forcing amplitude Ã, the largest interface deformation that
the drop attains while undergoing steady-state oscillations during any oscillation
period is maximized at a series of the value of the forcing frequency called resonance
frequencies ω̃rn, where n = 1, 2, . . . . W&B studied the forced oscillations of pendant
and sessile drops that are induced by vibrating the substrate on which the drops are
supported. W&B showed that the resonance frequencies depend strongly on drop
size and properties and forcing amplitude. The deformation profiles, namely the
curves of maximum drop deformation versus Ω̃, that they obtained demonstrated
the softening nonlinearity of the system, which was characterized by asymmetric
skewing of the resonance peaks toward lower values of the frequency as the Reynolds
number Re (while holding dimensionless forcing amplitude A fixed) or A (while
holding Re fixed) increased. As first shown by C&T and Mollot et al. (1993) for
liquid bridges, the computed variation of the resonance frequency with Re, which
depends on viscosity, surface tension, density, and drop size, can be combined with
its experimental measurement to infer the viscosity or the surface tension of the drop
liquid. Unfortunately, the sensitivity of the resonance frequency to changes in Re
becomes small and approaches zero as Re continues to increase, thereby rendering
the technique useless for Reynolds numbers exceeding about 30.

For sufficiently large Re and/or A, W&B sometimes observed a finite jump in the
value of maximum drop deformation when the forcing frequency was increased by
a small amount: this indicates that there is the possibility of more than one stable
solution to the nonlinear system of equations governing fluid motion inside the drop
and drop shape at those parameter values, or that hysteresis may occur. The major
goal of this paper is to investigate theoretically the conditions for the occurrence
of hysteresis during forced oscillations of supported drops, which has not heretofore
been attempted.

Hysteresis is the phenomenon whereby a system can have more than one stable
solution, or response or output, for the same set of input parameters depending on
the previous state of the system. Figure 1 illustrates a typical hysteretic response
for a system with a soft nonlinearity, where x is the control parameter or the
input and y represents the response parameter or the output. Points B and C show
locations in parameter space at which turning-point bifurcations occur when the
control parameter equals xl and xu, respectively. The broken curve joining B and
C represents an unstable, and unobservable, solution branch. The upper and lower
stable branches of solutions are depicted by the two solid curves. Points B and C thus
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Figure 1. Typical hysteretic response that would be exhibited by the forced Duffing oscillator
having a soft nonlinearity.

identify a hysteresis range of the control parameter xl 6 x 6 xu within which more
than one solution exists for the response parameter y. Outside this range only one
solution exists.

Examples of systems for which hysteresis has been observed include the buckled
beam (Pezeshki, Elgar & Krishna 1991), the damped unbalanced rotating shaft (Shaw
& Shaw 1991), forced convective boiling (Salehpour & Yao 1983), and the semilinear
phase-conjugate mirror (Królikowski & Cronin-Golomb 1991). Hysteresis is often
an undesirable effect, as in the buckled beam example where the beam can undergo
rapid oscillation between two stable states. Hysteresis is often also a cause of energy
or efficiency loss, as in rolling friction (e.g. Koizumi et al. 1983). Yet another goal of
this paper is to show that the phenomenon of hysteresis can be used to advantage in
inferring the physical properties of the drop (bridge) liquid in forced oscillations of
supported drops (liquid bridges) by overcoming the aforementioned limitation of the
method that arises at even moderate values of Re.

While the computational work of W&B on supported drops and that of C&T
on liquid bridges clearly have pointed to the possibility of hysteresis, these authors
always started integrating their equations in time from an initially static rest state.
Unfortunately, such an approach precludes insight into the effects of initial conditions.
For a system which can exhibit hysteretic response, detection of a second limit cycle
requires that the initial conditions or the previous state of the drop be varied in
a systematic fashion. A convenient way of systematically varying initial conditions
theoretically or experimentally is to carry out a discrete sweep procedure in which
the control parameter, here the forcing frequency Ω or amplitude A, is varied from
a low value to a high value and then back to the original low value. For example,
when a sweep is carried out in forcing frequency, the governing equations are solved
numerically at a given value of Ω until a limit cycle is detected. The steady oscil-
latory solution that is thereby obtained is then used as the initial condition for the
solution when the sweep parameter is changed to Ω ± ∆Ω, where ∆Ω is a speci-
fied increment.

Therefore, when the control parameter x is increased or decreased over a range
during a sweep in which the system exhibits hysteresis as in figure 1, the observed
value of the response parameter y follows one of the two stable solution branches
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indicated by the solid curves until the turning point at the end of that branch is
reached. When x is further varied in that direction beyond the turning point by an
amount ∆x, y jumps to the other branch regardless of how small ∆x is. Hence, the
jump in the response provides a convenient way for detecting the location of the
turning points. This behaviour, which is also known as the jump phenomenon, is
exhibited by simple nonlinear models such as the damped forced Duffing oscillator
(Hagedorn 1981; Jordan & Smith 1987). By contrast, the response that would be
uncovered by the previous method of W&B would consist solely of the complete
lower solution branch up to point C and the portion of the upper branch to the right
of point D.

DePaoli et al. (1995; see also DePaoli 1994) employed a sweep procedure and ex-
perimentally detected hysteretic response in the case of drops of mixtures of glycerin
and water that are pendant from the tip of a capillary tube and forced to undergo
oscillations by subjecting them to mechanical or electrical forcing. Although these
authors characterized the transient deformation of the drops through a spectrophoto-
metric technique, they also used a high-speed camera to obtain photographic evidence
that confirmed that two stable oscillatory states are possible at the same value of
the forcing frequency over a hysteresis range. The drop responses that they observed
were qualitatively similar to that of the soft-nonlinear Duffing oscillator depicted in
figure 1. These authors further demonstrated that hysteretic drop response can also
be observed by performing a sweep in the forcing amplitude while holding fixed the
forcing frequency, thereby examining the parameter space from an additional per-
spective. DePaoli (1994) curve-fitted his experimentally determined results exhibiting
hysteresis to simple, low-order nonlinear models. He found that if the curve-fits are
carried out by using experimental measurements from one region of the parameter
space, the simple nonlinear models could not predict quantitatively the response of
real drops in another region of the parameter space. The latter finding (a) should not
be too surprising given that the multi-dimensional Navier–Stokes system is a partial
differential equation that is much more complex than an equation that governs the
dynamic response of a simple nonlinear oscillator and (b) further points to the need
for solving numerically the full Navier–Stokes system for elucidating the hysteretic
response of supported drops (liquid bridges).

Several other studies of drops and bubbles, albeit in the absence of solid supporting
boundaries, have uncovered hysteretic response during forced oscillations. Parlitz et
al. (1990) solved a one-dimensional equation to study the radial oscillations of a
gas bubble suspended in water and subjected to forcing induced by an external,
time-periodic sound field. Their results showed that such a bubble can can be driven
into a hysteretic, or even chaotic, deformation response when the amplitude of
the forcing is sufficiently large. Daidz̆ić (1995) experimentally observed hysteretic
deformation of a free drop of n-hexadecane that is acoustically levitated in air and
forced to oscillate due to periodic variation of the acoustic pressure. This author also
discovered that when the drop was oscillated about an equilibrium shape which is
an oblate spheroid, it exhibited a hard nonlinearity such that the observed resonance
frequencies increased with increasing excitation amplitude. Later, Trinh et al. (1996)
observed hysteretic deformation with soft nonlinearity as shown in figure 1 in the case
of small droplets of water/glycerin solutions that are acoustically levitated in air and
forced to undergo oscillations due to imposition of time-periodic electric or acoustic
fields. Another interesting nonlinear phenomenon that these authors observed is that
the droplets may exhibit asymmetric shape instabilities in the vicinity of the lower
turning point during a downward sweep. Therefore, although previous studies of
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Figure 2. A liquid drop supported on a solid rod and undergoing forced oscillations in
a vacuum or a gas of negligible density and viscosity.

nonlinear oscillations of drops and bubbles have uncovered hysteretic drop or bubble
response, they have either been experimental in nature or entailed computational
analysis of simple one-dimensional models.

Section 2 presents the problem statement and governing equations, boundary
conditions, and initial conditions. The finite-element algorithm used and the discrete
sweep procedure employed are explained in detail in § 3. Section 4 presents the first
computational results for a pendant drop hanging from a rod that exhibits hysteretic
response during forced oscillations. Section 4 ends by extending the present results to
situations in which the drops are supported on a tube instead of a rod. Concluding
remarks and the relevance of the new results to certain other practically important
free-surface flows are given in § 5.

2. Problem statement
The system considered here is an axisymmetric drop of an incompressible New-

tonian liquid of constant viscosity µ and density ρ that is pendant from a circular
cylindrical rod of radius R. As shown in figure 2, the rod axis lies along the z̃′-direction
and coincides with the axis of symmetry of the drop and the direction of gravity. The
drop is forced into oscillations by oscillating the rod in the z̃′-direction sinusoidally
in time with forcing frequency Ω̃ and amplitude Ã such that the the position z̃′ of
the rod–drop interface in a fixed frame of reference is given by z̃′ = Ã sin Ω̃t̃, where
t̃ is time. Aside from exerting a constant pressure, the ambient gas surrounding the
drop is taken to have a negligible influence on the dynamics. The drop/ambient fluid
interface has constant surface tension σ, and is of course free to deform as the drop
oscillates. However, the three-phase contact line is held fixed at, or is pinned to, the
edge of the circular face of the rod. In what follows, whenever the same symbol is used
to denote a dimensional quantity and its dimensionless counterpart, the dimensional
quantity has a tilde above it and its dimensionless counterpart has not.

2.1. Governing equations and boundary conditions

The time-dependent motion of liquid within the drop volume V is governed by the
Navier–Stokes system,

∇ · v = 0 in V , (1)

Re

(
∂v

∂t
+ v · ∇v − AΩ2 sin (Ωt) ez

)
= ∇ · T + ReG ez in V , (2)
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that is written in a non-inertial frame of reference in which the rod is stationary, i.e.
z = z′ −A sinΩt. The dimensionless symbols used in the equations of conservation of
mass (1) and momentum (2) are the gradient operator ∇ ≡ R∇̃, velocity v ≡√ρR/σ ṽ,
forcing amplitude A ≡ Ã/R, forcing frequency Ω ≡ √ρR3/σΩ̃, time t ≡ √σ/ρR3 t̃,

and stress tensor T ≡ √ρR3/µ2σ T̃ . For a Newtonian fluid, the total dimensionless

stress is given by T = −pI +[∇v+(∇v)T ], where p ≡√ρR3/µ2σ p̃ is the dimensionless
pressure and I is the identity tensor. The dimensionless numbers that appear in (1) and
(2) are the Reynolds number Re ≡ (1/ν)

√
σR/ρ (see Basaran 1992), which represents

the importance of inertial force relative to viscous force, and the gravitational Bond
number G ≡ ρgR2/σ, which represents the importance of gravitational force relative
to surface tension force. Here, g is the magnitude of gravitational acceleration, ν ≡ µ/ρ
is the kinematic viscosity, and unit vector ez is in the axial direction. As in the previous
work of W&B, it is found convenient here to cast the governing equations onto a
spherical polar coordinate system (r, θ, φ) with its origin at the centre of the rod face,
where φ is measured around the axis of symmetry.

Along the drop/ambient fluid interface S(t), whose shape is expressed mathemati-
cally by r − f(θ, t) = 0, the traction boundary condition demands that

nS · T = Re (2H) nS on S(t), (3)

where 2H(xS , t) is twice the local mean curvature of S(t), xS ∈ S(t) is the position
vector of points on the interface, and the outward unit normal to the surface is given
by nS = (fer − fθeθ)/√f2 + f2

θ
, where fθ ≡ ∂f/∂θ.

The drop shape, which is unknown a priori, is a material surface provided there is
no mass transfer across it. Hence the kinematic condition demands that

nS · (v − vS ) = 0 on S(t), (4)

where v and vS are the velocities of points located in V (just inside the surface) and
on S(t), respectively. Following Kistler & Scriven (1983) and W&B, equation (4) is
treated as an additional governing equation and used to solve for the position of the
free surface.

Because the oscillations are axisymmetric, the problem domain is simply the two-
dimensional region {V : 0 6 θ 6 π/2; 0 6 r 6 f(θ, t)}. Axial symmetry is imposed
by requiring the vanishing of the partial derivative of the shape function with respect
to the meridional angle at the drop tip

fθ = 0 at θ = 0 (5)

and the vanishing of both the θ-velocity and the shear stress along the drop centreline
S ′,

n′ · v = 0 on S ′ (6)

n′ t′ :T = 0 on S ′ (7)

where n′ and t′ are the unit vectors normal and parallel to the axis of symmetry S ′,
respectively.

Because the contact line is pinned,

f = 1 at θ = π/2 . (8)

Finally, the drop liquid must obey conditions of no-slip and no-penetration along the
drop–rod interface,

v = 0 at θ = π/2 . (9)



Hysteretic response of supported drops 339

2.2. Initial conditions

Each sweep carried out in this paper is started from an initial static state such that
the shape of the drop at t = 0 is a hemisphere of the same radius as the rod

f(θ, t = 0) = 1 , (10)

and the liquid inside the drop is quiescent

v(x, 0) = 0, p(x, 0) = constant in V , (11)

where x ∈ V . Whereas W&B use (10) and (11) as initial conditions in obtaining a
steady oscillatory solution at any value of the set of parameters {Re, G, A, Ω}, these
conditions are used here as initial conditions only when starting a frequency sweep
at a value of Ω = Ωlow while holding fixed the set of parameters {Re, G, A} or when
starting an amplitude sweep from a value of A = Alow while holding fixed the set of
parameters {Re, G, Ω}. During a frequency sweep, for example, once a limit cycle is
reached at Ω = Ωlow, the control parameter Ω is increased to Ω = Ωlow + ∆Ω and
the initial conditions on the drop shape and velocity and pressure fields within the
drop at the new value of the control parameter are those of the limit-cycle solution
attained at the previous value of the control parameter. This procedure is continued
by increasing Ω at each step until a specified value of the control parameter Ωhigh is
reached. Thereafter, the systematic procedure of moving the system from one steady
oscillatory state to a new steady oscillatory state is continued but now by decreasing
the control parameter by an amount ∆Ω at each step. The same procedure is employed
during an amplitude sweep where the control parameter is first varied from Alow to
Ahigh in increments of ∆A and then back to the starting point.

3. Finite-element analysis
The algorithm based on the Galerkin/finite-element method (G/FEM) and the

FORTRAN program developed by W&B for analysis of pendant drop oscillations
without hysteresis were modified to incorporate the sweep procedure described in the
previous section and will be further elaborated below. The drop interior was divided
into a mesh of Nθ by Nr biquadratic elements in the meridional (θ) and radial (r)
directions (cf. W&B). In this section, only those aspects of the algorithm that differ
from those of W&B are described. For details of code development and computer
implementation, the reader is referred to W&B. The resulting modified code was run
on IBM RS6000-320H and 590 workstations and a Silicon Graphics (SGI) Indigo
II Extreme R4400 workstation at the Oak Ridge National Laboratory and an SGI
Indigo II Extreme R8000 workstation at Purdue University.

3.1. Volume conservation and accuracy tests

In previous studies of free and forced oscillations of liquid drops and bridges in which
numerical methods that are similar to the ones used in this work were employed, the
discretized equations were integrated in time for at most a few hundred time steps
(Basaran 1992; C&T; Basaran & DePaoli 1994). However, detection of a single limit
cycle solution can require on the order of 1000 time steps and a typical sweep often
lasts on the order of 10 000 or more time steps in this work. The criterion that is
used here to determine that a steady oscillatory state has been reached at each value
of Ω or A is that the maximum values of the drop aspect ratio (a/b)m, where the
aspect ratio (a/b) ≡ f(0, t)/f(π/2, t), during the last three oscillation periods agree
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to within a tolerance of 5 × 10−4. Although the drop typically undergoes tens of
periods of oscillation during 1000 time steps, the drop volume deviates by less than
0.1% from its original value during this time period. However, since the computations
for a typical sweep require an order of magnitude more time steps, there exists the
possibility that small errors in drop volume which occur at each time step might
accumulate over a simulation and prevent the detection of a limit cycle in certain
regions of the parameter space.

In this paper, volume conservation to within a tolerance of 0.02% is enforced by
bounding the maximum allowable fractional change in calculated volume Vc from
its initial value V0. When this tolerance is exceeded, the initial volume is virtually
restored by multiplying each nodal value of the free-surface location f (except at the
fixed contact line) by a factor of (V0/Vc)

1/3. In a series of test cases with Re = 10
and A = 0.1 using a 16× 8 mesh, the resonance frequency and aspect ratios at steady
state calculated with volume renormalization agreed to within four significant digits
with results obtained without volume correction. It is noteworthy that with volume
renormalization, the corrections made to f are limited to values that are several
orders of magnitude smaller than the criteria used for convergence of the iterative
technique employed for solving the discretized Navier–Stokes system and detection
of limit cycles. Moreover, with the volume renormalization in place, mesh refinement
tests of the type performed by W&B showed that using a 16 × 8 mesh produced
results which agreed to within four significant digits with those obtained using finer
meshes when Re 6 40 and A 6 0.125. The 16× 8 mesh was therefore used exclusively
for obtaining the computational results reported in the following sections.

3.2. Discrete sweep algorithm

The detection of deformation hysteresis entailed the implementation of the approach
described in § 2.2. In this approach, whenever a limit cycle was detected, the entire
solution {v, p, f} at the value of the control parameter x (Ω or A) was saved and
the control parameter was increased or decreased by the specified increment ∆x.
If at any value of the control parameter a limit cycle was not attained before the
dimensionless time measured from the attainment of the previous limit-cycle solution
exceeded a prespecified maximum (here, 100), or if the algorithm failed to converge
at any point, the saved solution from the last limit cycle was restored and the value
of the increment in the control parameter was halved to ∆x/2. The time integrations
were then restarted from the value of the control parameter equal to x ±∆x/2. If a
failure occurred for a second time, the increment in the control parameter was halved
one more time to ∆x/4. The simulation was terminated if a failure occurred for a
third time. When successful, the aforementioned discrete sweep procedure allowed a
smooth transition from one steady oscillatory state to a new one with a small change
in the control parameter.

4. Results and discussion
4.1. Forced oscillation behaviour

In the absence of flow, the equilibrium shape of a supported drop is determined by
a balance between gravitational and surface tension forces. When the support is set
into vertical oscillations in a time-periodic manner, viscous and inertial forces enter
the picture and compete with the force of surface tension to determine the evolution
in time of the drop shape and the underlying flow and pressure fields. It is instructive
to view the ratio of these forces in terms of ratios of certain time scales. These are
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the time scale for vorticity transport from the moving solid boundary and the time
scale for rod motion, both made dimensionless by the capillary time scale, namely

tv

tc
=

R2/ν√
ρR3/σ

=
1

ν

√
σR

ρ
= Re (12)

and

tr

tc
=

1/Ω̃√
ρR3/σ

= Ω−1. (13)

When the former ratio of time scales is held fixed, the maximum deformation (a/b)m
attained by the drop during steady-state oscillations varies with the reciprocal of the
latter time scale as follows. When Ω � 1, the drop behaves as if it were a static
drop and suffers little deformation regardless of the value of Re. However, as Ω is
increased and the reciprocal of the dimensional time scale for rod motion becomes
comparable to the natural frequency of oscillation of the drop, which is set by the
capillary time scale, a forcing frequency is reached at which the deformation of the
drop is maximized. The value of Ω at which this occurs is known as the primary
resonance frequency ωr1 ≡ Ω.

Figure 3 shows the variation of maximum drop deformation (a/b)m with forcing
frequency Ω for several values of Re when the forcing amplitude is held fixed at
A = 0.05. This figure exhibits the evolution of primary resonance frequencies and the
deformations suffered by the drops under resonance conditions over a small subset
of the parameter space explored by W&B. As in the paper of W&B, each data point
(not shown) that falls on one of the curves plotted in figure 3 has been obtained
for an initially static drop that is set into motion by oscillating the supporting rod
at frequency Ω. Higher-order resonance frequencies also result at higher Ω values,
corresponding to the higher modes of oscillation of the supported drop (cf. Basaran
1992; W&B). Similar resonance phenomena are exhibited by liquid bridges (C&T)
and levitated drops (Trinh et al. 1996) undergoing forced oscillations.

The insert to figure 3 shows the variation of the primary resonance frequency ωr1
with the Reynolds number Re. Indeed, this figure makes plain that when Re is larger
than about 30, the value of ωr1 is insensitive to further increases in the value of Re. It
is this insensitivity of ωr1 to changes in Re for even moderate values of the Reynolds
number that renders impossible the use of simple frequency response analysis in
inferring the viscosity and/or surface tension of liquids from forced oscillations of
supported drops and liquid bridges (see C&T and Mollot et al. 1993).

Figure 3 also shows that as Re increases, namely the relative importance of forcing
to damping rises, (a/b)m increases. The results of figure 3 point to the incipience of
hysteresis as Re increases and the capability of simple frequency response analysis
to detect an upper turning point ωu ≡ Ωu, if it exists, without a sweep procedure.
However, to examine continuation of the upper solution branch, if it exists, to the
left of ωu and to locate the lower turning point ωl ≡ Ωl , the sweep procedure of
the sort described in §§ 2 and 3 is needed. Moreover, it is worthwhile to investigate
whether such a sweep procedure can overcome the above mentioned limitation that
is inherent to the frequency response analysis in determining physical properties of
supported liquid drops and bridges. In the remainder of this section, the results of
such sweeps are highlighted when the relevant dimensionless groups are varied in the
ranges 20 6 Re 6 40, 0.05 6 A 6 0.125, and 0 6 G 6 1.
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Figure 3. Variation of aspect ratio at maximum drop deformation (a/b)m during steady-state
oscillations as a function of forcing frequency Ω in the vicinity of the primary resonance frequencies
at four values of the Reynolds number Re. The deformation response profiles shown have been
obtained with frequency response analysis without a sweep procedure. Here G = 0 and A = 0.05.
Insert shows the variation of the primary resonance frequency ωr1 with Re.

4.2. Hysteretic deformation behaviour

Figure 4 confirms computationally that the drop response can become hysteretic
when the governing dimensionless groups have values that equal those of the drop
that is at the incipience of hysteresis in figure 3, i.e. for Re = 30 and A = 0.05,
when the forcing frequency Ω is swept between 3.6 and 3.8 in each direction. The
hysteresis range detected by the sweep procedure that is shown in figure 4 lies between
3.69± 0.01 6 Ω 6 3.77± 0.01. In the sweep carried out to establish the results shown
in figure 4 when 3.69 ± 0.01 6 Ω 6 3.77± 0.01, the control parameter was varied in
such a way that two limit cycles were found at a given value of the forcing frequency
at four distinct values of Ω. As in figure 1, the lower solution branch shown in figure
4 continues up to the upper turning point ωu ≈ 3.77±0.01, at which point the tangent
to the curve of drop deformation versus forcing frequency becomes nearly vertical.
It is noteworthy that the upper solution branch exhibits a maximum in (a/b)m at a
value of the forcing frequency that lies in the hysteresis range. Indeed, (a/b)m first
increases and then decreases as the forcing frequency is swept downward from its
value at the upper turning point Ωu to that at the lower turning point Ωl . Hence
whereas the maximum value of (a/b)m equals 1.573 and is attained at the resonance
frequency of Ω = 3.80 when classical frequency response analysis is used as in figure
3, a higher (a/b)m value of 1.586 is attained albeit at the lower value of Ω = 3.74
along the upper solution branch when the sweep procedure is used. For values of
Ω that lie outside the hysteresis range, the calculated values of (a/b)m as a function
of Ω depicted in figure 4 agree quantitatively with those obtained without a sweep
procedure (cf. figure 3). That hysteresis in drop deformation is possible at disturbance
amplitudes as small as 1

20
th of the initial drop radius has profound implications for
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Figure 4. Variation of aspect ratio at maximum drop deformation (a/b)m during steady-state
oscillations as a function of forcing frequency Ω. The deformation response profiles shown have
been obtained with a frequency sweep. Here Re = 30, G = 0, A = 0.05, and Ω has been swept
from 3.6 to 3.8 in both directions. The occurrence of hysteresis is indicated by the presence of two
distinct solution branches for values of Ω that lie between 3.69 ± 0.01 and 3.77 ± 0.01. The shape
inserts show drop profiles when the steady-state aspect ratio is maximized (solid curves) and when
it is minimized (dashed curves) at Ω = 3.74 along the two solution branches (see text). The phase
portrait inserts show the velocity of the drop tip as a function of the position of the drop tip. Both
limit cycles correspond to steady oscillatory solutions at Ω = 3.70.

applications referred to in the Introduction and certain others to be discussed in the
Concluding Remarks.

The shape inserts to figure 4 show drop profiles when the steady-state aspect ratio
is maximized (solid curves) and minimized (dashed curves) at the same value of the
forcing frequency, Ω = 3.74, along both the lower branch and the upper branch of
solutions. These shape inserts provide confirmation that a range of Ω exists within
which the same drop may exhibit more than one stable response at the same value
of the forcing frequency (and amplitude).

The attainment of each limit-cycle solution in figure 4 typically required about
500 to 1000 time steps. On an IBM RS6000-320H, which is the slowest machine
that is available to us, this took about 30 to 60 minutes of CPU time. Therefore,
with state-of-the-art workstations that are available today, each data point shown in
figure 4 can be determined in about one tenth this time. However, because limit-cycle
solutions at tens of forcing frequencies have to be determined to uncover a hysteresis
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range, analysis of drop response with hysteresis can be a computationally intensive
task.

Phase portraits of drop motion, such as those shown as inserts to figure 4, not only
can show the existence of two distinct limit cycles at the same value of the control
parameter but also can hint at the role played by initial conditions when the forcing
frequency lies in the hysteresis range. In figure 4, the phase paths or trajectories shown

are in the plane of the velocity of the drop tip (a
◦
/b) and the normalized position of

the drop tip, or aspect ratio (a/b). In figure 4, one of the phase trajectories shown
is that which results when the forcing frequency is changed from 3.68 to 3.70 during
an upward sweep and the other one is that obtained when the forcing frequency is
changed from 3.72 to 3.70 during a downward sweep. The open circle along each of
the phase trajectories corresponds to the value of tip velocity and drop aspect ratio
at the point in time when the forcing frequency is either increased or decreased to
3.70 after the attainment of the previous limit cycle.

Figure 4 shows that the phase trajectory corresponding to the lower limit cycle
moves away substantially from the starting point before it approaches the limit cycle
at large times. Indeed, computations using different values of ∆Ω show that the lower
limit cycle can be reached from a wide range of initial conditions. By contrast, the
upper limit cycle in this case occurs at a value of the forcing frequency that places
it near the lower end of the upper solution branch. The upper limit cycle is attained
only if the control parameter is changed by a sufficiently small amount, i.e. ∆Ω � 1.
Computational experiments have shown that a frequency increment of 0.02 is suffi-
ciently small in this case to allow accurate determination of the entire hysteresis range.
Moreover, use of a ∆Ω that is too large can prevent the detection of the lower turning
point. Indeed use of too large a value of ∆Ω during a downward sweep can cause
either the phase trajectory to prematurely tend to the lower limit cycle or the drop to
go unstable (cf. Trinh et al. 1996). This is a point that is returned to in what follows.

4.3. Drop response to a frequency sweep

According to the results shown in figure 4, the present computational method is
thus capable of detecting hysteretic deformation. The effects of drop properties on
this behaviour may then be examined by performing frequency sweeps at various
Re values. Figure 5 shows the steady-state deformation response of drops with
Re = 20, 25, 30, and 40 and G = 0 when the forcing amplitude is held fixed at
A = 0.05 and the forcing frequency Ω is swept from 3.4 to 4.0 and then back to 3.4 as
described in §§ 2 and 3. Figure 5 shows that for the most viscous drop, Re = 20, the
drop deformation response is a single-valued function of the forcing frequency. The
continuous approach to ωr1 from either direction further confirms that hysteresis is
not achieved at this value of Re. Figure 5 shows, however, that when Re is increased
to 25, two turning points appear and the drop response as measured by (a/b)m is
no longer a single-valued function of Ω. The results of figure 5 indicate that when
A = 0.05, the critical value of the Reynolds number for the onset of hysteresis is
Re = 22.5± 2.5.

Several noteworthy observations can be made upon closer examination of the
results depicted in figure 5 and figures like it (see below). First, as made evident
by the deformation profiles for the least viscous drops, i.e. for Re = 30 and 40, the
values of the forcing frequency at the two turning points Ωu and Ωl shift toward
lower values of Ω as Re increases. Second, the change in Ωu with Re slows and
approaches zero as the Reynolds number increases. Third, the value of Ωl continues
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Figure 5. Drop response to a frequency sweep: deformation response profiles of drops for
Re = 20, 25, 30, and 40 when G = 0 and A = 0.05.

to decrease as Re increases. Therefore, the two turning points become more widely
separated from one another, or the hysteresis range Ωu − Ωl widens, as Re increases.
Hence, unlike ordinary frequency response analysis in which the primary resonance
frequency ωr1 (cf. W&B and figure 3) becomes insensitive to further changes in Re
when the Reynolds number is sufficiently large, the discrete sweep procedure provides
a sensitive means for inferring the physical properties of the drop liquid at any value
of Re. Fourth, whereas the maximum steady-state deformation (a/b)m may occur at
an Ω value outside the hysteresis range when Re is moderate, it occurs inside the
hysteresis range as Re gets large. Fifth, while the upward and leftward shifting of the
response profiles with increasing Re is consistent with the observations of W&B (cf.
figure 3), figure 5 further shows that when Re is sufficiently large the value of (a/b)m
increases as Ω decreases and approaches Ωl in the hysteresis range along the upper
solution branch. This variation of (a/b)m with Ω is nearly linear, in accord with the
experimental results of DePaoli et al. (1995) on real pendant drops but in contrast to
the response exhibited by the simple Duffing oscillator (Hagedorn 1981).

Similarly, the effect of forcing amplitude on hysteretic response of oscillating
pendant drops may be explored by comparing computed drop deformation profiles
obtained by frequency sweeps carried out at different values of A. By way of example,
figure 6 shows results of frequency sweeps obtained when A = 0.10 for the same
values of Re as in figure 5. In both figures 5 and 6 and in all of the other cases
examined (not shown), the onset of hysteresis, the location of the upper and lower
turning points, and the width of a hysteresis range are also functions of A. In each
case, both the hysteresis range Ωu−Ωl and difference in the value of (a/b)m along the
upper solution branch and that along the lower solution branch increase as either Re
or A increases, in accord with intuition. Figures 5 and 6 and others like them further
reveal that the limiting value of Re for onset of hysteresis decreases as A increases
and that both turning points shift toward lower values of the forcing frequency as Re
or A increases.

While performing frequency sweeps that resulted in figures such as 5 and 6, the
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Figure 6. Drop response to a frequency sweep: deformation response profiles of drops for
Re = 20, 25, 30, and 40 when G = 0 and A = 0.1.

observed value of (a/b)m sometimes jumped between the two stable solution branches
for values of the forcing frequency between Ωl and Ωu. As alluded to earlier, the phase
trajectories often tended to favour and approach the limit cycles lying on the lower
solution branch. For this reason, it was often found necessary to repeat a given sweep
several times using different increments in forcing frequency ∆Ω in order to uncover
in particular the extent of the upper solution branch. While the upper turning point
Ωu is also readily identified by the increasing slope of the response profile (a/b)m
versus Ω as Ω → Ωu from below, a similar indication of the approach to the lower
turning point Ωl was unfortunately not available due to the difficulty of detecting a
decrease in the slope of the response profile as Ω → Ωl from above (cf. the shapes of
the response profiles in the vicinity of points B and C in figure 1). Therefore, some
unavoidable uncertainty exists in the location of Ωl values reported in this paper.
However, the reported values may be considered upper bounds on the actual values.

Figure 7 shows the evolution in time of drop shapes during a single period of
oscillation for a drop forced to undergo oscillations at a forcing frequency Ω = 3.34
when Re = 40, G = 0, and A = 0.10 (cf. figure 6). Here the solid curves represent the
instantaneous drop shape and the dotted curves the equilibrium drop shape which
is hemispherical. Panels (a–d) depict drop shapes that are observed along the lower
branch of solutions and panels (e–h) depict those that are observed along the upper
branch of solutions shown in figure 6. The drop shapes depicted in panels (a–d), and
those depicted in panels (e–h), are those that occur when the tip of the rod is located
at z′ = −A, 0, A, and 0, respectively, in a laboratory frame of reference. Since the
number of crossings (in a quadrant) between the actual shape and the hemispherical
shape furnishes the mode number of the oscillations (cf. W&B), the oscillations are
purely in the primary or n = 1 mode for the solution lying along the lower branch.
By contrast, comparison of figure 7(g) and the other panels along the bottom row
of figure 7 reveal that there is coupling between the n = 2 and the n = 1 modes
for the solution lying along the upper branch. Such mode coupling phenomena have
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Figure 7. Evolution in time of drop shapes during a single period of oscillation for drops forced
to undergo oscillations at a forcing frequency of Ω = 3.34 when Re = 40, G = 0, and A = 0.10:
(a–d) drop shapes that are observed along the lower branch of solutions and (e–h) drop shapes that
are observed along the upper branch of solutions (see figure 6). Here the solid curves represent the
instantaneous drop shape and the dotted curves the equilibrium drop shape which is hemispherical.
In both rows, each drop shape shown is separated in time a quarter of a period (see text).

previously been observed in computations of large-amplitude oscillations of free drops
of both inviscid (Lundgren & Mansour 1988) and viscous (Basaran 1992) liquids.

It is also instructive to contrast velocity fields within two drops at a value of the
forcing frequency that lies in a hysteresis range where one of the drops falls on the
lower solution branch and the other on the upper solution branch. Figures 8 and 9
show the evolution in time of the velocity fields within two drops when Ω = 3.74, Re =
30, A = 0.05, and G = 0 (cf. figure 4). Figures 8 and 9 show the velocity field within the
drop that lies along the lower and upper branches respectively of solutions in figure
4 during approximately one period after it has reached a state of steady oscillations.
Although the velocity fields are plotted in the moving frame of reference, it is helpful

in what follows to couch the discussion in terms of the position z′ and velocity
◦
z ′ of

the rod tip in a laboratory frame of reference. It is important to note that in figures

8 and 9, −A ≡ −0.05 6 z′ 6 A ≡ 0.05 and −AΩ ≡ −0.187 6
◦
z ′ 6 AΩ ≡ 0.187.

Figure 8(a) shows the drop at the instant in time when the rod tip is at z′ = 0.0162

and the rod is moving downward with velocity
◦
z ′ = 0.1769. At this instant in time, the

aspect ratio a/b ≈ 1 and is increasing with time and the velocity vectors throughout
most of the drop point in the downward direction. Figure 8(b) shows the drop about
a quarter of a period later when the z′ ≈ 0.05 and the rod has reversed its direction

of travel and is now moving upward with velocity
◦
z ′ = −0.0015. However, because of

finite inertia, fluid elements near the drop tip cannot change their direction of motion
instantaneously and thus continue to move in the downward direction. In figure 8(b)

and figure 8(c), where z′ = 0.0476 and
◦
z ′ = −0.0570, the drop deformation is near

maximum. During this period when drop deformation is largest, a small recirculating
eddy forms, figure 8(b), and grows, as shown in figure 8(c). The eddy has disappeared
by the time the drop has reached the state depicted in figure 8(d), where z′ = 0.0371
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Figure 8. Evolution in time of the velocity field inside an oscillating supported drop with Re = 30,
G = 0, A = 0.05, and Ω = 3.74. Velocity vectors at 50% of the nodes are shown. The velocities in
each of the figures have been scaled (differently) by the magnitude of the maximum velocity vm at
that time step. Each velocity vector shown belongs to its base point. (a) t = 312.5675, a/b = 1.0218,
vm = 0.8460; (b) t = 312.9014, a/b = 1.2212, vm = 0.3014; (c) t = 312.9820, a/b = 1.2370,
vm = 0.1520; (d) t = 313.0956, a/b = 1.2360, vm = 0.1570; (e) t = 313.5416, a/b = 0.9744,
vm = 0.9163; (f) t = 313.8036, a/b = 0.7930, vm = 0.2672; (g) t = 313.8522, a/b = 0.7855,
vm = 0.0766; and (h) t = 313.8922, a/b = 0.7874, vm = 0.1720. Here time is measured from the start
of the sweep. Panel (a) represents the drop 21.4200 dimensionless time units since the frequency
was changed from 3.72 to 3.74 in an upward sweep (cf. figure 4). The corresponding instantaneous
positions and velocities of the rod in the laboratory frame are given in the text.

and
◦
z ′ = −0.1253. Figure 8(e) shows the drop when its aspect ratio is nearly unity:

at this instant z′ = −0.0370 and
◦
z ′ = −0.1260 and the velocity vectors throughout

most of the drop point in the upward direction. By the time the drop has reached the

state shown in figure 8(f), where z′ = −0.0486 and
◦
z ′ = 0.0446, the rod has already

passed through the axial location where z′ is a minimum and is now travelling in
the downward direction again. For times corresponding to figure 8(f–h), the drop is
near its minimum deformation. A small recirculating eddy is beginning to form near

the rod surface in figure 8(f). In figure 8(g), where z′ = −0.0456 and
◦
z ′ = 0.0766,

the eddy near the rod has grown in size and a second counter-rotating eddy has
formed near the drop tip. A short time later in figure 8(h), where z′ = −0.0420 and
◦
z ′ = 0.1012, both eddies have dissipated and the velocity vectors throughout most of
the drop once again point in the downward direction.

Figure 9 shows that there are some similarities and differences between the flow
fields that exist within the drop that lies along the upper branch of solutions in figure
4 and those along the lower branch. As with the drop lying on the lower branch of
solutions, the drop that lies on the upper branch of solutions exhibits zones of fluid
recirculation when the drop is near maximum and minimum deformation, as shown
in figures 9(b–d) and figures 9(f, g), respectively. On account of the larger deformation
exhibited by the drop of figure 9 compared to the drop of figure 8, the recirculations
are more intense in the former than the latter. More interestingly, figures 9(c) and
9(d) show that as the eddy near the rod when the drop is near maximum deformation
dissipates, a second eddy forms near the drop tip which does not arise in the drop
along the lower branch of solutions.
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Figure 9. As figure 8 but for a downward sweep. (a) t = 596.7386, z′ = 0.0478,
◦
z ′ = 0.0551,

a/b = 1.0357, vm = 2.0246; (b) t = 597.2291, z′ = 0.0018,
◦
z ′ = −0.1869, a/b = 1.5830,

vm = 0.2968; (c) t = 597.2595, z′ = −0.0039,
◦
z ′ = −0.1864, a/b = 1.5861, vm = 0.1909;

(d) t = 597.3016, z′ = −0.0117,
◦
z ′ = −0.1818, a/b = 1.5847, vm = 0.1649; (e) t = 597.8113,

z′ = −0.0421,
◦
z ′ = 0.1011, a/b = 0.9935, vm = 2.2921; (f) t = 598.0639, z′ = −0.0028,

◦
z ′ = 0.1867,

a/b = 0.5668, vm = 0.4557; (g) t = 598.0950, z′ = 0.0031,
◦
z ′ = 0.1867, a/b = 0.5582, vm = 0.2321;

and (h) t = 598.1273, z′ = 0.0091,
◦
z ′ = 0.1839, a/b = 0.5612, vm = 0.4122. Here time is measured

from the start of the sweep. Panel (a) represents the drop 22.6474 dimensionless time units since the
frequency was changed from 3.76 to 3.74 in downward sweep (cf. figure 4).

To gain further insight into the effect of A on hysteresis phenomena during forced
oscillations of pendant drops, response profiles have been obtained while holding Re
and G fixed for several values of A. These calculations have shown that outside the
hysteresis ranges at a given value of Ω, (a/b)m increases nearly linearly with A, in
agreement with the results of W&B at low Re. In contrast to situations in which Re
is varied while A is held fixed (cf. figure 5), these calculations show that both Ωu
and Ωl depend strongly on A, while the width of the hysteresis range increases only
slightly as A increases. Moreover, by carrying out sweeps at different values of A, it
is straightforward to determine the critical forcing amplitude Ac above which a drop
of a given Re value will undergo hysteretic deformation. Therefore, the sensitivity of
the location of both turning points and the existence of a well defined value of Ac
that demarcates drop response without hysteresis from that with hysteresis can both
be exploited in inferring physical properties of the drop liquid.

4.4. Drop response to an amplitude sweep

In classical textbooks on nonlinear dynamics (see e.g. Jordan & Smith 1987), it
is common to view the behaviour of a nonlinear system from a three-dimensional
perspective. In the present context, this would entail determination of surfaces of
constant Re in the parameter space of {Ω,A, (a/b)m}. So far, attention has been
focused in this paper on situations in which sweeps are carried out by varying Ω while
holding A fixed. To gain further insights into hysteresis phenomena associated with
oscillating pendant drops and probe heretofore unexplored portions of the parameter
space, results of sweeps are reported in this section in which A is varied while holding
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Figure 10. Drop response to an amplitude sweep: deformation response profiles of drops for
Re = 20, 25, 30, and 40 when G = 0 and Ω = 3.4.

Ω fixed. Although DePaoli et al. (1995) have shown through an extremely small set
of experiments that hysteretic deformation can be observed experimentally during
forced oscillations of a pendant drop in which the forcing amplitude is the control
parameter, an adequate understanding of drop response during amplitude sweeps is
lacking. Supplying this missing understanding is the goal of this section.

Figure 10 summarizes the results of amplitude sweeps performed at a fixed value
of Ω of 3.4 for drops with Re = 20, 25, 30, and 40. In contrast to a frequency sweep in
which resonance peaks can be directly observed, an amplitude sweep shows ranges of
A for which the chosen Ω value lies inside or outside a hysteresis range. Inspection of
figure 10 reveals that amplitude sweeps exhibit certain similarities and differences with
respect to the frequency sweeps of the previous subsection. For both types of sweeps,
the location of the upper turning point changes little but that of the lower turning
point changes substantially as Re increases. Moreover, as Ωu in a frequency sweep, Au
in an amplitude sweep approaches a limiting value as Re becomes sufficiently large.
Nevertheless, comparison of the results of figure 10 with those of figure 6 shows that
Au is less sensitive than Ωu to changes in Re at low Reynolds numbers. Moreover, as
in frequency sweeps, the lower solution branches in amplitude sweeps nearly coincide
with one another except in the vicinity of the upper turning points. Outside the
hysteresis ranges, increasing Re causes a small upward shift of the upper solution
branches but the magnitude of the shift falls as Re rises.

Figure 10 shows that noticeable changes in the slopes of the deformation profiles
of (a/b)m versus A occur as both turning points are approached. This permits a more
accurate determination of the parameter range over which hysteresis occurs in an
amplitude sweep compared to a frequency sweep. Similar amplitude sweeps carried
out with forcing frequency held fixed at Ω = 2.5 and 5.0 (not shown) did not yield
hysteretic responses, thereby confirming that all hysteresis ranges for the Re and A
values examined here lie between these two extremes of forcing frequency.
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Re Ac Ωc

20 0.070 3.683
25 0.049 3.815
30 0.041 3.855
35 0.034 3.905
40 0.028 3.961

Table 1. Critical forcing amplitude and frequency at onset of hysteresis.

4.5. Effect of gravity

In the absence of flow, the equilibrium shape of a pendant drop of fixed volume is
a function of the gravitational Bond number G and can be determined by solving
the nonlinear Young–Laplace equation of capillarity (see e.g. Michael 1981). Analysis
of equilibrium shapes of pendant drops of course forms the basis of a well-known
technique for measuring surface or interfacial tension (e.g. Roe, Bacchetta & Wong
1967; Levin, Pitts & Terry 1976). If the rod motion is ceased during oscillations of
a pendant drop, the drop shape tends to its equilibrium profile at large times. For
example, the present transient algorithm predicts that the equilibrium drop aspect
ratio (a/b)eq varies from unity at G = 0 to 1.0746 ± 0.0002 at G = 1, a result that
accords with solutions of the static Young–Laplace equation.

Calculations have been carried out to determine how the drop response to a
frequency sweep varies as a function of G when Re and A are held fixed. These
calculations show that at low values of the forcing frequency, (a/b)m increases as
gravitational Bond number G increases: this finding accords with intuition because
(a/b)eq increases as G increases. These calculations further show that as G increases,
while the width of the hysteresis range and observed (a/b)m values increase only
slightly, the primary resonance frequency and the values of the upper and lower
turning points decrease significantly. The downward shifting of ωr1, ωl and ωu accords
with previous studies of oscillating pendant drops (W&B) and liquid bridges (C&T)
because as G increases the wavelength of a disturbance that can be accommodated
between the contact line and the drop tip along the liquid–gas interface increases.

4.6. Hysteresis ranges

A convenient means for illustrating the ranges of forcing frequency and forcing am-
plitude over which hysteretic deformation may be observed during forced oscillations
of a viscous supported drop of a given liquid, i.e. fixed Re, is a bifurcation diagram. In
such a diagram, the values of A and Ω at which bifurcations are detected are plotted
against a control parameter, here A. As part of the effort directed at constructing
bifurcation diagrams, it is also desirable to determine quantitatively the critical values
of forcing amplitude Ac and forcing frequency Ωc associated with the incipience of
hysteresis because the pair (Ac, Ωc) mark the initial points of curves in such diagrams.
In order to determine precise values of Ac for onset of hysteresis at several fixed values
of Re, a set of frequency sweeps was performed over ranges of A in the expected
vicinity of Ac. Starting at some value of the forcing amplitude As, frequency sweeps
were performed at values of A = As + 0.01m, where m = 0, 1, 2, . . ., until a vertical
tangent was just detected in the resulting response profile. Table 1 summarizes the
variation with Re of the computed values of Ac and the corresponding values of Ωc
at which the vertical tangencies were just detected. Table 1 shows that Ac falls but Ωc
rises as Re rises.



352 E. D. Wilkes and O. A. Basaran

3.6

3.4

3.2

3.0

2.8
0.025 0.050 0.075 0.100

A

Re =20
Re =25
Re =30
Re =40

3.8

4.0

0.125

¿

Figure 11. Bifurcation sets for Re = 20, 25, 30, and 40 when G = 0 showing values of (Ac, Ωc) for
onset of hysteretic drop response and evolution with forcing amplitude of locations of the two
turning points between which hysteresis occurs.

Figure 11 shows the data from table 1 combined with the turning points detected
over the parameter range studied in the form of bifurcation sets at four values of
Re. In figure 11, at a fixed value of Re, each hysteresis range begins at (Ac, Ωc) and
hysteresis ranges corresponding to higher values of A would be represented by vertical
line segments joining the upper and lower curves for the A value of interest. The
bifurcation diagram reported in figure 11 conveniently shows the emergence of the
turning points along with the downward shifting and widening of the hysteresis ranges
with respect to forcing frequency as forcing amplitude A increases. At a given value of
Re, the lower (upper) curve shows the lowest (highest) value of the forcing frequency
at which a limit cycle could be detected along the upper (lower) solution branch.
While the precision with which the lower turning points could be located is limited as
previously noted, the evolution of the turning points with increasing forcing amplitude
is clear. Figure 11 shows that as the drop viscosity (Re) decreases (increases), the
forcing amplitude necessary to observe hysteretic deformation decreases. Moreover,
figure 11 also makes clear that for a given value of A, the wider is the hysteresis range
and the lower are the turning point frequencies the higher the Reynolds number.
Although no instance of drop detachment could be detected over the range of Re
and A examined, increasing A and/or Re beyond the ranges considered herein could
result in the instability of oscillating pendant drops (see § 5).

According to results presented in the previous subsections, the maximum steady-
state aspect ratio undergoes a large step change ∆(a/b)m at both turning points.
Figure 12(a) shows the variation of the magnitude of the step decrease in (a/b)m at
the lower turning point ωl with forcing amplitude at several values of Re. Figure 12(b)
similarly shows the corresponding step increase at the upper turning point ωu. In each
case, the magnitudes of the step changes in drop deformation are strong functions of
Re and increase most rapidly with A when the forcing frequency is near Ac. The soft
nonlinearity of oscillating pendant drops gives rise to downward jumps in (a/b)m that
are greater in magnitude than the upward jumps in (a/b)m because the amplitude of
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Figure 12. Variation with forcing amplitude of the magnitude of the step changes in (a/b)m at the
two turning points for Re = 20, 25, 30, and 40 when G = 0. (a) ∆(a/b)m at the lower turning point
and (b) ∆(a/b)m at the upper turning point.

the drop response in general increases as Ω is increased (decreased) along the lower
(upper) solution branch in the hysteresis range. Understanding the variation of these
step changes in response amplitude with the governing dimensionless groups is likely
to prove important in practical applications.

4.7. Forced oscillations of drops hanging from tubes

Although supporting a drop of liquid at the tip of a rod is in principle a straightfor-
ward task (DePaoli 1994), certain factors complicate its operation in practice. First,
the drop liquid must be placed on the rod by either using a syringe to deposit the
drop liquid directly on it or dipping the rod into a container of the drop liquid. Either
method of drop placement can result in imperfect wetting of the rod surface by the
drop liquid and the violation of the fixed contact line boundary condition (cf. DePaoli
1994). Even if the contact line is pinned, it might prove difficult to deposit a drop
of predetermined volume on the rod. A much easier way of creating a pendant or a
sessile drop is of course to form it at the tip of a tube, as is done in the aforementioned
and well-known technique for measuring surface or interfacial tension (e.g. Roe et al.
1967; Levin et al. 1976). A natural question which then arises is whether the results of
frequency response analysis and frequency or amplitude sweeps would differ greatly
between the situation considered earlier in this section and that of drops hanging
from tubes.

The forced oscillations of supported drops hanging from tubes was analysed by
modifying the algorithm for determining the response of drops hanging from rods by
replacing the rod by a tube of infinitesimal wall thickness. The computational domain
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in the tube problem did not terminate at z = 0 but extended up to a horizontal
plane placed a distance |zi| upstream of the tube exit. Over the range of dimensionless
groups considered, the computational results obtained with zi = −2 differed by less
than 0.1% from those obtained with zi = −8. However, the results were sensitive to
the location of the horizontal plane if |zi| < 2.

By way of example, a frequency response analysis has been carried out to determine
the variation of maximum drop deformation (a/b)m with forcing frequency Ω for drops
that are hanging from tubes and rods for two values of Re, Re = 10 and 20, when
the forcing amplitude is held fixed at A = 0.05. At both Reynolds numbers, both
the deformation at resonance and the primary resonance frequency are higher for a
drop hanging from a tube than one hanging from a rod. That the deformations at
resonance are higher in the former case compared to those in the latter case accords
with intuition because of the restraining influence of the rod surface at z = 0 on the
motion of the fluid interface and the underlying fluid in the latter case. Moreover, that
the resonance frequencies are lower in the latter case than those in the former case
also accords with intuition because the presence of a no-slip boundary at z = 0 slows
down the motion and hence increases (decreases) the period (frequency) of oscillation
compared to the situation when the no-slip boundary is replaced by a liquid which is
identical to that of the drop. The calculations also show that the resonace frequencies
are only slightly affected if the rod is replaced by a tube. However, if the rod or the
tube is impulsively brought to rest and the oscillations are allowed to decay freely (cf.
Basaran & DePaoli 1994), one finds that the ensuing free oscillations are more highly
damped in the presence of a rod than in the presence of a tube.

A further comparison between the two situations has been obtained by computing
the steady-state deformation response of a drop hanging from a tube with Re = 30
and G = 0 when the forcing amplitude is held fixed at A = 0.05 and the forcing
frequency Ω is swept from 3.5 to 4.0 and then back to 3.5 as described in §§ 2
and 3. The calculations have shown that drop response is hysteretic over a range of
frequencies. Comparison of these results to those of figure 4 in which the dimensionless
groups are identical reveals that the hysteresis range is pushed to higher values of
the forcing frequency and the drop deformations in the hysteresis range are larger for
a drop hanging from a tube than one hanging from a rod. Although computational
results cited in this subsection and others like them show that the differences in
the results of frequency response and sweep analyses between the two situations
are small, care must be exercised when comparing experimental measurements and
computational predictions of forced oscillations of supported drops obtained under
different conditions.

5. Concluding remarks
The results of this research represent the prediction for the first time of hysteresis

phenomena during forced oscillations of liquid drops and bridges by computational
analysis of the full transient, nonlinear, Navier–Stokes system in more than one
space dimension. The calculations reported herein have shown that hysteresis in
drop deformation is possible at forcing amplitudes as small as a few percent of
the undeformed drop radius, a finding which has immense implications in diverse
practical applications.

Numerical analysis of the free boundary problem composed of the full, transient,
nonlinear Navier–Stokes equation and associated interfacial and boundary conditions
that is carried out in this paper to uncover hysteretic deformation of the free surface
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shape has application in other free-surface flows. An example of a particularly
important class of free-surface flows is coating flows, which are the backbone of
industrial processes involved in the manufacture of X-ray and photographic film,
VCR tapes, and microelectronic materials. In the study of coating flows, even if a
flow is linearly stable in the theoretical sense, i.e. all small-amplitude disturbances
decay in time, its sensitivity to ongoing disturbances in the operating environment is an
issue of immense practical importance (see e.g. Christodoulou 1990). The sensitivity of
these practically important free-surface flows to such disturbances is often evaluated
by carrying out a linearized frequency response analysis. However, Giavedoni (1995)
has employed the full nonlinear Navier–Stokes system as in this paper to study the
stability of thin film coating flows with respect to certain high-frequency disturbances.
Although this author did not find hysteresis because she did not use the sweep
procedure employed in this paper, the occurrence of hysteresis can have disastrous
consequences in such practical situations. For example, in a region of the parameter
space over which hysteresis occurs, a coated film of a certain thickness may result
during part of the process and one of drastically different thickness may be produced
at other times.

There are numerous applications (see Introduction) where one would like to go
beyond the stable oscillations presented in this paper and predict the onset of
drop instability during forced oscillations. Although much is now known about
stable oscillations of drops supported on rods (cf. W&B), studies of drop breakup
during forced oscillations are only in their infancy. For example, Smith et al. (1998)
have sidestepped the more difficult problem of modelling the breakup process and
instead have resorted to correlating their experimental data on drop oscillations and
breakup through the use of the simple harmonic oscillator equation. Reassuringly,
the numerical methods presented in this paper can be extended (Wilkes, Phillips &
Basaran 1998) to analyse without any ad hoc approximations the more complicated
problem of drop ejection from an oscillating rod (Wilkes & Basaran 1998).
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